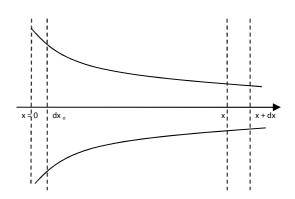
Machines thermiques

Fluides en écoulement :

1. Ecoulement d'un fluide dans une tuyère convergente.

On étudie la variation d'énergie cinétique d'un gaz dans une tuyère horizontale de révolution centrée autour d'un axe (xx'). L'aire de la section droite de la tuyère S(x) est variable le long de (xx'). L'écoulement a lieu sans frottement sur les parois.

Toutes les particules du gaz situées dans la tranche d'épaisseur dx d'abscisse x ont même vitesse $\mathbf{w}(x)$, de même sens que (xx').



a) Montrer en appliquant le premier principe (généralisé) de la thermodynamique que l'on peut écrire :

 $[h(x) + (1/2).w_X^2] - [h(0) + (1/2).w_0^2] = q(x).$

Où h(x) représente l'enthalpie massique du gaz ; où q(x) est la quantité de chaleur reçue par kilogramme de gaz entre les abscisses 0 et x. Le régime d'écoulement est supposé permanent.

b) L'écoulement est assez rapide pour qu'aucun échange de chaleur n'ait lieu : q(x) = 0. La transformation subie par chaque mole de gaz est alors adiabatique, et elle est supposée réversible. Le gaz utilisé est parfait, γ = cste .

Déterminer la vitesse de sortie du gaz de la tuyère, w1, en fonction de w_0 , γ , T_0 la température du gaz au point d'abscisse 0, M , R = 8,314 J.K⁻¹.mol⁻¹ et du rapport $\Psi = P_1/P_0$ où P_1 est la pression du gaz en sortie de tuyère et P_0 celle à son entrée.

Application numérique : $\gamma = 1.4$; $P_0 = 1.25.10^5$ Pa ; $P_1 = 10^5$ Pa ; $T_0 = 1300$ K ; M = 29 g/mol ; $W_0 = 0.1$

Réponses : a) Utiliser l'expression du premier principe généralisée aux fluides en écoulement. On établira cette expression en raisonnant sur un système fermé en déplacement (voir cours).

b) GP: en grandeurs massiques $\Delta h = c_p \Delta T$ pour un GP; transfo adiabatique et réversible d'un gaz parfait:

loi de Laplace. $T_1 = T_o$. $\psi^{\frac{\gamma-1}{\gamma}}$

Par le bilan établi en (a) on tire : $w(x) = \sqrt{\frac{2}{M} \frac{\gamma R}{\gamma - 1} T(0) \left(1 - \psi^{\frac{\gamma - 1}{\gamma}}\right)}$ en considérant que w(0) \approx 0.

2. Puissance d'une pompe:

Une pompe aspire l'eau d'un puits et la transvase dans un réservoir pressurisé avec un débit massique constant D_m . Le niveau supérieur de l'eau dans le réservoir est à une altitude z_s au-dessus de celui du puits et la pression y est égale à P_1 , supérieure à la pression atmosphérique P_o .

- a) On néglige toute viscosité : le fluide suit alors la relation entre enthalpie massique et pression : dh = (1/ ρ).dP où ρ est la masse volumique de l'eau. Calculer la puissance \mathcal{G}_{ℓ} fournie par la pompe au fluide.
- b) La viscosité est prise en compte : l'écoulement du fluide dissipe une énergie $K.D_m/\rho$ par unité de masse transvasée, où ρ est la masse volumique du fluide et K un coefficient caractérisant le phénomène. Calculer la nouvelle valeur de \mathcal{G}_ℓ .

Réponses : a) $\mathcal{P}_{\ell} = D_m \cdot (gz_s + (P_1 - P_o)/\rho)$; b) $\mathcal{P}_{\ell} = D_m \cdot (gz_s + (P_1 - P_o)/\rho) + K \cdot D_m^2/\rho$

3. Réfrigérant :

De l'air chaud ($P_1 = 6$ bar, $T_1 = 500$ K) est refroidi de façon isobare jusqu'à la température $T_0 = 300$ K dans un échangeur thermique parfaitement calorifugé. Le fluide réfrigérant est constitué d'eau (capacité thermique massique c = 4180 J.K⁻¹.kg⁻¹) qui entre à la température $\theta_e = 12$ °C et qui sort à la température θ_s de l'échangeur. Le débit d'eau est d = 100 g/s et celui de l'air est de 6,5 g/s. On donne $M_{air} = 29$ g/mol et pour l'air $\gamma \approx 1,4$. Calculer θ_s .

Réponses : Les puissances thermiques reçues par chacun des fluides sont opposées.

Pour chaque fluide : $D_m(h_{entr\'ee} - h_{sortie}) = P_{th}$; $\Delta h_{air} = c_p \cdot \Delta T$; $\theta_s = 15,1$ °C.

Machines thermiques:

1. Pompe à chaleur :

On désire maintenir dans un appartement une température constante $T_1 = 290$ K grâce à une pompe à chaleur utilisant une source froide (lac...) de température $T_0 = 280$ K. La température extérieure est supposée uniformément égale à T_0 . Il faut pour cela dépenser la puissance nécessaire pour compenser les pertes de chaleur.

a) Pour évaluer ces pertes, on arrête le chauffage, la température de l'appartement étant initialement de T_1 . Au bout d'un intervalle de temps $\Delta t = 2$ heures, on mesure une température $T_2 = 285$ K.

La chaleur perdue pendant une durée infinitésimale dt s'écrit : $\delta Q = a.C (T - T_0).dt$ C étant la capacité thermique de l'appartement, T la température de l'appartement à l'instant t, et a un coefficient constant. Calculer a.

b) Sachant qu'une efficacité réelle ne représente que 40% de l'efficacité théorique, quelle puissance P faut-il fournir pour maintenir la température T_1 dans l'appartement ? On donne : $C = 10^7 \, \text{J} / \text{K}$.

Réponses : a) bilan thermique sur dt : CdT + aC(T - T_o)dt = 0, par intégration sur Δ t : a = 9,63.10-5 s-1. b) P = 830 W.

2. Perte de performance d'un congélateur.

Un congélateur neuf a un coefficient d'efficacité e=2,0. Un appareil dans lequel on a laissé s'accumuler une couche de glace a une efficacité réduite. On suppose que l'effet de la couche de glace est de multiplier par deux l'entropie produite pour un même transfert thermique pris à la source froide. La température intérieure du congélateur est $T_f = -20$ °C et la pièce dans laquelle il se trouve à une température $T_{ch} = 19$ °C.

- a. Calculer numériquement le rapport α entre l'efficacité e du congélateur neuf et l'efficacité $e_{rév}$ d'une machine théorique réversible fonctionnant avec les mêmes sources.
- b. Etablir la relation entre les efficacités e, e_{rév} et la création d'entropie S_c :

$$\frac{1}{e} - \frac{1}{e_{rén}} = \frac{T_{ch}}{O_{fr}}.S_c$$

Interpréter qualitativement cette relation.

- c. Montrer que le rapport α devient, pour un congélateur non dégivré : $\alpha' = \alpha/(2-\alpha)$.
- d. Calculer numériquement α' et l'efficacité réduite e'. Conclure sur la puissance consommée par l'appareil.

Réponse : a) Par le cours, $e_{r\acute{e}v} = T_f/(T_c - T_f) = 6.5$; d'où $\alpha = 0.31$. b) $\Delta S_{cycle} = 0$ donne $S_c = -S_e$ sur le cycle.

Donc $S_c = -(Q_c/T_c) - (Q_f/T_f)$. En utilisant la définition de l'efficacité, et avec $W = -(Q_f + Q_c)$ on obtient :

$$\frac{1}{e} = -\left(1 + \frac{Q_{ch}}{Q_{fr}}\right) = S_c \cdot \frac{T_{ch}}{Q_{fr}} + \frac{T_{ch}}{T_{fr}} - 1$$

c) Le transfert thermique Q_f étant inchangé, que si S_c est doublé :

$$\frac{1}{e'} - \frac{1}{e_{r\acute{e}v}} = 2\left(\frac{1}{e} - \frac{1}{e_{r\acute{e}v}}\right)$$

d) $\alpha' = 0.18$ et e' = 1.2. La consommation devient $P'_c = (2/1.2) \cdot P_c$; elle est augmentée de 67%.

3. Elévation de la température d'un fleuve par une centrale de production électrique :

Une centrale nucléaire fournissant une puissance de 1000 MW est installée au bord d'un fleuve dont la température est de valeur $T_f = 300 \text{ K}$ et le débit de 400 m³/s. La température de la source chaude est de $T_c = 700 \text{ K}$.

En admettant que le rendement soit seulement de 60 % du rendement de Carnot, quelle est l'élévation de température ΔT du fleuve résultant du fonctionnement de la centrale ?

On donne la capacité thermique massique de l'eau c = 4,18.10³ J.K⁻¹.kg⁻¹.

Réponses : Par un bilan de puissance, et avec $r = 0.6.r_{Carnot}$ la puissance thermique cédée au fleuve vaut : $P_{th} = -P_{th} \left(0.6 \left(1 - \frac{T_f}{T_c} \right) \right)^{-1} - 1 \right)$. D'où $\Delta T = P_{th} / (D_{th}.c)$ AN : $\Delta T = 1.1$ K.

4. Machine frigorifique à absorption :

Un réfrigérateur à absorption fonctionne avec une solution d'ammoniaque pour agent thermique et trois sources de chaleur S_1 , S_2 , S_3 aux températures $T_1 > T_2 > T_3$.

Une solution concentrée d'ammoniaque est portée à la température T_1 dans le générateur G (source S_1) grâce à la combustion de butane ou par effet Joule (apport Q_1). L'évaporation s'accompagne d'un enrichissement de la vapeur en ammoniac et simultanément, bien sûr, d'un appauvrissement de la solution. La vapeur est envoyée dans le condenseur G0 tandis que la solution appauvrie en ammoniaque est renvoyée dans une chambre d'absorption G1 à lieu un transfert thermique G2.

Dans le condenseur C (source S_2), refroidi par l'air extérieur (échange Q_2), la vapeur riche en ammoniac se condense à la température T_2 puis pénètre dans l'évaporateur E (source S_3).

Dans l'évaporateur (source S_3) à la température T_3 , l'ammoniac en se vaporisant met en jeu un transfert thermique Q_3 . Puis il retourne à la chambre d'absorption A où il se dissout dans la solution appauvrie à la température T_A voisine de la température ambiante T_2 . Le cycle peut alors recommencer.

Le réfrigérateur comporte aussi une pompe P de faible puissance qui renvoie la solution de l'absorbeur A vers le générateur G. Le travail fourni par cette pompe est négligeable devant les transferts thermiques échangés. La source froide S₃, c'est à dire l'évaporateur, est placée dans l'enceinte à refroidir.

- a) Schématiser le fonctionnement de cette machine.
- b) Définir l'efficacité η de ce réfrigérateur. Exprimer η en fonction de T_1 , T_2 et T_3 dans le cas d'un fonctionnement réversible. Le calculer pour t_1 = 100 °C, t_2 = 25 °C et t_3 = -5 °C en considérant que T_2 et T_A sont égales. Comparer la valeur de ce coefficient d'efficacité à celui obtenu pour une machine à compresseur n'utilisant que les sources S_2 et S_3 .
- c) Le rendement réel d'un appareil de camping est 60 % du rendement d'un appareil fonctionnant de façon réversible.. Calculer la masse d'eau que l'on peut congeler à l'aide d'une bouteille de butane de 13 kg, sachant que l'enthalpie de combustion du butane vaut $\Delta H_{comb} = 5.10^7$ J/Kg et que l'enthalpie de fusion de l'eau à -5 °C vaut $h_{fus} = 334$ kJ/kg.

Réponses : a) b) 1° princ. : $Q_1 + Q_2 + Q_4 + Q_3 = 0$; 2° princ. : $(Q_1/T_1) + ((Q_2 + Q_4)/T_2) + (Q_3/T_3) = 0$.

d'où $\eta = Q_3 / Q_1 = 1,8$. Avec le second système, $\eta = Q_3 / W = 8,9$. Système plus avantageux, malgré la présence de pièces mécaniques. (W : travail fourni par le compresseur).

c) $Q_1 = m_{but} \cdot \Delta H_{comb}$; $Q_3 = \eta_{r\acute{e}el} \cdot Q_1$; masse d'eau congelée : m = 2100 kg.

5. Rendement d'une turbine à gaz :

Une turbine à gaz fonctionne suivant le cycle théorique de Joule, appelé aussi cycle de Brayton, composé de deux adiabatiques reliées par deux isobares :

- * compression isentropique de l'état A (P₁, V₁, T₁) à l'état B (P₂, V₂, T₂) dans un compresseur.
- * échauffement isobare de l'état B (P₂, V₂, T₂) à l'état C (P₃, V₃, T₃) dans un échangeur thermique (chambre de combustion).
- * détente isentropique de l'état C (P3, V3, T3) à l'état D (P4, V4, T4) dans la turbine à gaz.
- * refroidissement isobare de l'état D (P₄, V₄, T₄) à l'état A (P₁, V₁, T₁) dans un second échangeur thermique.

Le cycle est décrit par n moles de fluide (supposé parfait).

On rappelle que pour n moles d'un gaz parfait, la variation d'entropie répond à :

$$\Delta S = C_p.\Delta(InT) - nR.\Delta(InP)$$

- 1) Représenter le cycle de Joule dans les diagrammes (P, V) et (T, S).
- 2) Calculer le rendement théorique du cycle de Joule :
 - a- en fonction des températures T₁, T₂, T₃ et T₄ du fluide dans chacun des quatre états envisagés.
 - b- en fonction du taux de compression $x = P_2 / P_1$ et du rapport $\gamma = C_D / C_V$ des chaleurs massiques.
- 3) a- Le rapport T₃ / T₁ des températures a une valeur imposée.
 - Calculer le taux de compression qui permet d'obtenir un travail maximal.
 - b- Exprimer alors ce travail maximum en fonction de n, γ , T_1 , T_3 .

Réponses:

1) Voir corrigé. Le long des isobares : $T(S) = T_o \cdot exp((S-S_o)/C_p)$

2) a) Turbine à gaz équivaut à un moteur ; rendement : $r = -W/Q_c$ avec ici $Q_c = Q_{BC}$. $r = 1 + \frac{T_1 - T_4}{T_2 - T_2}$.

b) Loi de Laplace le long des isentropiques AB et CD, pour ce gaz parfait. Après simplifications : $r = 1 - \left(\frac{P_2}{P_1}\right)^{\frac{1-\gamma}{\gamma}} = 1 - x^{\frac{1-\gamma}{\gamma}}$

3) a) $y = T_3/T_1$ est imposé. Exprimé les échanges énergétiques et les température en fonction de x,y et α .

On calcule alors:
$$-W = C_n T_1(y - x^{\alpha}) \cdot (1 - x^{-\alpha}) = C_n T_1(y - x^{\alpha} - y \cdot x^{-\alpha} + 1)$$
.

On cherche x_{max} tel que –W soit maximal. Soit x_{max} tel que d(-W)/dx = 0

La solution est
$$x_{max} = y^{1/2\alpha}$$
 qui conduit après calculs à $-W_{max} = \frac{\gamma nRT_1}{\gamma - 1} \left(1 + \frac{T_3}{T_1} - 2\sqrt{\frac{T_3}{T_1}} \right)$

6. Bilan énergétique d'une centrale électrique nucléaire - Exploitation du diagramme enthalpique.

Une centrale nucléaire produit de l'électricité par l'intermédiaire d'un alternateur couplé aux turbines à vapeur T₁ et T₂. Le fluide caloporteur est de l'eau. A la sortie des turbines l'eau se refroidit dans le condenseur (l'échange d'énergie thermique peut se faire avec l'eau pompée dans une rivière).

Dans l'évaporateur E' les échanges thermiques peuvent s'effectuer avec un circuit primaire d'eau qui récupère l'énergie thermique libérée au coeur du réacteur par la fission de l'uranium enrichi.

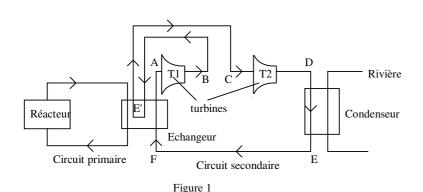
L'eau du circuit secondaire décrit le cycle représenté sur la figure 2.

- Les transformations $A \to B$ et $C \to D$ sont supposées adiabatiques réversibles et correspondent au passage dans les turbines haute pression (T_1) et basse pression (T_2) .
 - Entre les deux turbines l'eau subit une surchauffe B → C en repassant dans l'échangeur E'.

On note T, P, x, température, pression et titre en vapeur (soit $x = m_{vap}/m_{tot}$).

On désigne par h et s les enthalpies et entropies massiques du fluide.

On prendra h = 0 et s = 0 pour le liquide dans l'état $P_0 = 1$ bar et $T_0 = 273$ K (0 degré Celsius).



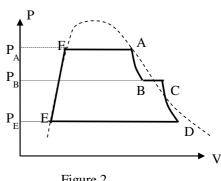


Figure 2

On négligera les variations de volume de l'eau liquide avec la température et la pression.

On donne:

$$\theta_A$$
 = 287 ° C et P_A = 70 bar

 $(\theta : température Celsius).$

$$P_B$$
 = 10 bar ; θ_C = 270 ° C ; P_D = 0,05 bar.

 c_{ℓ} = 4,18 kJ.K-1.kg-1 (capacité thermique massique de l'eau liquide, supposée constante).

On rappelle que pour un fluide incompressible, l'entropie massique répond à : $s = s_{réf} + c.ln(T/T_{réf})$ où T est la température absolue, c est sa capacité thermique massique, supposée constante, et sréf désigne l'entropie dans un état de référence de température T_{réf}.

On montre que le bilan énergétique pour un fluide en écoulement lent et horizontal, traversant un organe donné d'une machine, s'écrit entre l'entrée et la sortie et en quantités massiques : $\Delta h = w_u + q$ où w et q sont respectivement les travaux utile et transfert thermiques reçus par unité de masse du fluide.

1) Déterminer les expressions de h_E , h_F , s_E et s_F en fonction de c_ℓ , T_E , T_F et T_0 .

Donner les valeurs numériques de hf et sf.

2) Dresser un tableau où figurent les valeurs de h, s, θ, P (bar) et x pour les différents points A, B, C, D, E, F.

A cet effet on s'aidera du diagramme enthalpique fourni en annexe.

3) Comment lire, sur le diagramme enthalpique, les énergies thermiques qFA , qBC et qDE "reçues" par le fluide ? Donner les valeurs numériques de qFA , qBC et qDE ainsi que celle de qEF .

• le travail w₁ par unité de masse fourni par la centrale au cours d'un cycle. En déduire :

• le transfert thermique q₁ fourni par la source chaude pour 1 kg de fluide.

Calculer le rendement thermique :

$$r = \frac{w_1}{q_1}$$

- 4) Exprimer le travail utile wu produit par les turbines lorsqu'elles sont traversées par 1 kg de fluide. Comparer wu et w1.
- 5) La puissance électrique de la centrale est P = 1300 MW. Quel doit être la valeur du débit massique de fluide D_m dans le circuit secondaire?